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Mic Board: 

 



 

 
 



 

Mic Board Performance: 
 
Our Mic Board did not quite match the optimal performance that we expected from the mic 
board transfer function. Instead, some frequencies had higher amplitudes than other frequencies. 
Whether this was due to physical imperfections, the nature of the filter with the microphone 
board circuit, or some other factor, we are not sure. We noticed that the microphone was more 
receptive to someone with a higher voice, aka more sensitive to high frequencies. Frequencies 
(or voices) that were too low tended to be slightly attenuated. This is reflected in the graph 
shown below. 

 
Mic Board Description: 
 
The mic board works by first converting noise signals into a variable current. The variable 
current alternates its frequencies based on the frequency of the noise signal. Then, that 
alternating current source causes an alternating voltage. This alternating voltage is fed through a 
unity buffer op-amp to deal with any loading issues. The DC portion of the signal is then 
removed with an RC-filter. It is then offset with a voltage supplied by amp2 and fed through a 
variable gain amplifier, whose strength is changed by adjusting the mic board potentiometer. The 



 

off-set voltage is formed from a voltage divider that uses Vdd and ground as the source and 
drain.  
 
 



 

Schematic: 

 
Figure 2: S1XT33N schematic (reference: Labs & first page of Lab Report PDF) 
 

 
 



 

Control: 
 
System Model: 
 
The model equations are: 

𝓋 L[k] = dL[k + 1] - dL[k] = 𝞱L𝓾L[k] - βL 

𝓋 R[k] = dR[k + 1] - dR[k] = 𝞱R𝓾 R[k] - βR 

𝓋[k] is the velocity of the wheel at each time step. d[k] is the number of ticks calculated by an 
encoder at each timestep. We can determine the velocity with two ways: either by the difference 
between the number of ticks of the next time step and the current one, or by the equation 𝞱𝓾[k] - 
β. 𝓾[k] is the control applied to each wheel at each time step. 𝞱 relates 𝓾[k] and 𝓋[k]. β is a 
constant offset in velocity of the wheel, and that is why we need to subtract it from 𝞱𝓾[k] to 
determine 𝓋[k].  
 
Closed-Loop Control: (reference: HW5&7 and Project Part 4 Lab Note) 
 
In the closed-loop model, we want to decrease the difference between the position of the wheels 
to zero so that the car goes straight. First, we define the difference between positions to be the 
position of the left wheel minus the position of the right wheel. This can be determined by the 
data we got from the ticks of each encoder: 𝜹[k] = dL[k] - dR[k]. We notice here that the 
difference of positions will be positive if the left wheel is ahead and negative if the right wheel is 
ahead. In order to decrease the difference at each timestep k, we need to add a control to our 
model for the car to move straight. Since we define 𝓋* to be our ideal velocity in SystemID, and 
we previously defined that 𝓋[k] = 𝞱𝓾[k] - β, we need to first pick kL and kR so that we can get to 
our desired goal without the car oscillating. The velocities we want to reach are 𝓋* - kL𝜹[k] and 
𝓋* + kR𝜹[k] to adjust the car to go straight. Rearranging the model equations, we can derive the 
control that can achieve this:  

𝓾L[k] = ( 𝓋* + βL)/𝞱L  -  kL* 𝜹[k]/𝞱 L 
𝓾R[k] = ( 𝓋* + βR)/𝞱 R  +  kR* 𝜹[k]/𝞱 R 

Finally, we plug this control to our initial model to get the model that “closes the loop” by 
making the car go straight: 

𝓋 L[k] = dL[k + 1] - dL[k] = 𝞱L(( 𝓋* + βL)/𝞱L  -  kL* 𝜹[k]/𝞱 L) -βL 

𝓋 R[k] = dR[k + 1] - dR[k] = 𝞱R(( 𝓋* + βR)/𝞱 R  +  kR* 𝜹[k]/𝞱 R) -βR 

 
In order to derive the system eigenvalue, we need to take a look at 𝜹[k] at the next timestep.  

𝜹[k + 1] = dL[k + 1] - dR[k + 1] 
 = (𝓋* - kL𝜹[k] + dL[k]) - (𝓋* + kR𝜹[k] + dR[k]) 

 = 𝜹[k](-kL - kR + 1) 



 

Thus, (-kL - kR + 1) is the eigenvalue. Since this system is discrete, the system in theory is stable 
when |λi| > 1. When we were solving HW7, we found that λ 𝜀 (-1, 1) is considered stable, and 
thus had to narrow our options to which is considered “better,” λ 𝜀 (-1,0] or λ 𝜀 [0, 1). We found 
that the latter is better since the former will cause oscillations.  

 
Based on the previous Jupyter notebook simulation graphs and TAs’ recommendations, I first 
chose my k values as 0.1 and then I increased the values until I reached the desired behaviour of 
the car going straight (at k = 0.5). Choosing these k values allowed the eigenvalue of the system 
to remain within [0, 1). This gain was better than the initial one since it allowed the car to 
converge faster. When I further increased my gain, I saw the car oscillate, which was expected 
since the gain is too high. The oscillation is how we know the eigenvalue has gone from positive 
to negative. From this part, we learned that an ideal gain shouldn’t be too low that it would take 
the car too long to converge to a straight line, and also shouldn’t be too high that it would make 
my car oscillate.  
 
I  personally had trouble with this part of the project. No matter what k value I chose, my car 
would always go left (even with a high gain, it would oscillate to the left). To debug, I tried 
changing the jolt value, but that didn’t change the behaviour. I tried making the “stronger” motor 
weaker by increasing the resistance value of the motor circuit, but that didn’t work. Emily then 
suggested changing the weight distribution of the car, and what finally drove the car straight was 
taping five 9 volt batteries at the right top edge of the car. The added weight created a more 
easily controlled system.  

 
 

Turning: 
 
As stated above, rearranging the model equations gave us the desired inputs for each wheel: 

𝓾L[k] = ( 𝓋* + βL)/𝞱L  -  kL* 𝜹[k]/𝞱 L 
𝓾R[k] = ( 𝓋* + βR)/𝞱 R  +  kR* 𝜹[k]/𝞱 R 

To make the car go straight, we set the PWM for the left wheel and the right wheel based on the 
equations above, and set our input, delta, to be the difference between the left wheel position and 
the right wheel position, plus delta_ss.  
 
To make the car turn left, we want to increase 𝓾R[k] and decrease 𝓾 L[k]. We do this by setting 
𝜹[k] so that it appears the left wheel has travelled farther than the right wheel. Our system will 
try to correct this error by applying more power to the right wheel, which will ultimately cause 
our car to turn. Since 𝜹[k] = dL[k] - dR[k], we want 𝜹[k] to be positive. To make the car turn 
right, we analogously want to set 𝜹[k] to make it look like the right wheel travelled farther than 



 

the left wheel, to make the system apply more power to the left wheel. This requires a negative 
𝜹[k]. To find our desired 𝜹[k], we derived the following equations based on the diagram below. 
 

 
First, using the equation for arc length, d = r𝞱, we derived the equations for 𝞱, dL, and dR.  

𝞱 = d/r = 𝓋*k/r  
dL = (r + ℓ/2)𝞱 = (r + ℓ/2) (𝓋*k/r) 
dR = (r - ℓ/2)𝞱 = (r - ℓ/2) (𝓋*k/r) 

Next, we plugged in our new values into 
 𝜹[k] = dL[k] - dR[k]. 

𝜹[k] = (r + ℓ/2) (𝓋*k/r) - (r - ℓ/2) (𝓋*k/r) = 𝓋*k ℓ/r 
 
In our code, k corresponds to the number of steps, l is the car width, and r is our preferred turn 
radius. We implemented turning by subtracting delta_reference from our original delta value. We 
set delta_reference to 𝓋*k ℓ/5r to turn right, -𝓋*k ℓ/r to turn left, and 0 to go straight. 
 
Trajectory Error Correction: 

 
For the car whose performance is plotted above, the car initially turns to the left because the right 
wheel moves a farther distance than the left wheel, before eventually going straight as it 
stabilizes. 
 



 

For our car, adding delta_ss changed our car’s trajectory by making it travel in the same 
direction as when it starts moving, rather than turning slightly at first. It is meant to correct errors 
that arise from external disturbances that affect the model system. It is different from using 
STRAIGHT_CORRECTION because it focuses on errors external to the car system, while 
STRAIGHT_CORRECTION deals with mechanical errors, such as wobbly wheels. For 
example, we scraped off too much of our wheels during the car’s assembly, which contributed to 
the car veering off when it thought it was going straight.  
 



 

SVD/PCA: 
 
Justification: 

 
To classify our words, we used envelope-based PCA. Envelope-based PCA is a good choice 
because it compresses our vector sizes and decreases the amount of information lost in 
classification. This linear projection is useful since while using a Launchpad, it is very easy to 
run out of space.  
 
Data Processing and Classifier Design: 
 
To help the classification process, we preprocess our data to make it cleaner and more uniform. 
We first align our data points so that each sample begins at the same time. We do this by 
defining a threshold value to determine when a speech command occurs, a pre_length value for 
when the command actually begins before the threshold is crossed, and a length value for how 
long the command takes place. Increasing the threshold helps to reduce noise, but increasing it 
too much can cause some parts of the sample to be lost. Similarly, having too small of a 
pre_length value can cause important data to be lost, but having too large of a value can add 
unnecessary noise. Then, we stack our data points and demean them to place them into a single 
matrix. In our A matrix, the rows represent different recordings, and the columns represent the 
features at different timesteps.  
 
The matrix equation for SVD is A = UΣVᵀ. Vᵀ is a rotation matrix made up of the orthonormal 
eigenvectors of A*A. Σ is a scaling matrix with the square root of the eigenvalues of A*A on its 
diagonal, ordered by magnitude. U is a rotation matrix that undoes the rotation of Vᵀ, and is also 
made up of orthonormal vectors.  
 
We used three singular values, because the three largest singular values corresponded to the 
dominant principal components. We felt that three singular values were sufficient in displaying 
the variance of the data.  
 
Classification Process:  
 
After preprocessing our training data into a matrix, we performed PCA on the matrix using SVD. 
We created a new basis using the principal components we chose. Then, we projected our 
training data onto this new basis to display four clusters, one for each word, and found a centroid 
for each cluster. During the actual classification process, we converted the input into the 
microphone into a vector of data points. We preprocessed the vector in the same way we 



 

processed our training data. Then, we demeaned the new data, projected it onto the PCA basis, 
and identified which centroid it was closest in Euclidean distance to. Since each centroid 
corresponds to a command, the closest centroid would determine which command to classify our 
word under.  
 
We all chose different words, but tried to choose words with unique shapes and/or said them 
with different intonations. For example, choosing a word with two syllables with an emphasis on 
the last one, vs choosing a word with one long, drawn-out syllable. We did this to help the 
classifier differentiate between the words.  

● Arthur: beep–beep–beep, tic-TACK, LEFT!, riiiggghhht 
● Rina: WAHffle, puTAO, cake, banana 
● Nada: yallAH, Go, banana, waTer 

 
Performance: While our classifier performed well on our prerecorded training and testing data, 
it did not perform as smoothly when we tested it in real time. In the SVD/PCA lab each word had 
an 88-100% accuracy rate, but in practice, we found it was less accurate and highly dependent on 
how we said our words. One possible reason for this was that when it tested the model in the lab, 
it would use some of the 30 words we recorded at once. When we recorded we were careful to 
say the words the same way each time, and it’s easy to get into a pattern of saying the words in a 
particular way during the recording stretch. However, later in practice, we’d be out of rhythm 
and did not necessarily say the words with the same stresses as when we recorded. We tried 
improving the real-time accuracy by adding a loudness threshold to make the car ignore random 
noise, as well as a classification threshold so that the car would only move when the sound 
closely matched one of the four words. 
 



 

Integration: 
 
What we learned: Planning is key. Especially when space and materials are limited. We could’ve 
avoided having to repeatedly rebuild circuit components by planning out the distribution of the 
circuit on the breadboard beforing building, and keeping it neat from the beginning. We also 
learned how to debug a circuit by compartmentalizing and analyzing individual components of 
the circuit, similar to how you debug code. Finally, we learned that taking caution and double 
checking voltages before connecting voltage-sensitive components is better than burning 
encoders and having to wait for an Amazon shipment.  
 
Suggestions: If this lab continues to operate remotely, I would suggest providing two extra 
encoders. Frying one encoder means you will probably fry the other as well. In addition, I would 
update the labs to include clearer instructions—specifically when it comes to using the 
launchpad to keep it from burning out.  
 
Favorite part: When the car became voice controlled. 
Least favorite part: Burning parts.  

 


